

Management of PH in patients with HFrEF and HFpEF

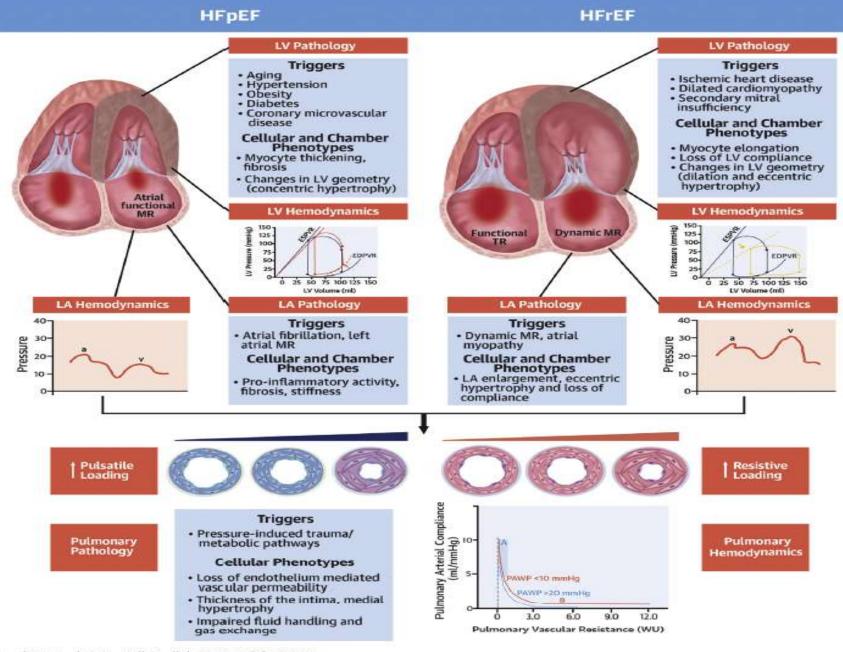
Prof. Dr. Dilek ÇİÇEK YILMAZ, FESC Mersin University Medical Faculty Cardiology Department

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

From a hemodynamic standpoint, pulmonary pressure can increase from the action of three mechanisms:

- increased cardiac output,
- increased left atrial pressure

 constriction and/or remodeling and/or thrombosis and/or embolism of pulmonary arteries.


HFrEF and HFpEF: elevated LAP is the primary factor of the increased mPAP

The pathophysiology of PH-LHD

1. An initial passive increase in LV filling pressures and backward transmission into the pulmonary circulation

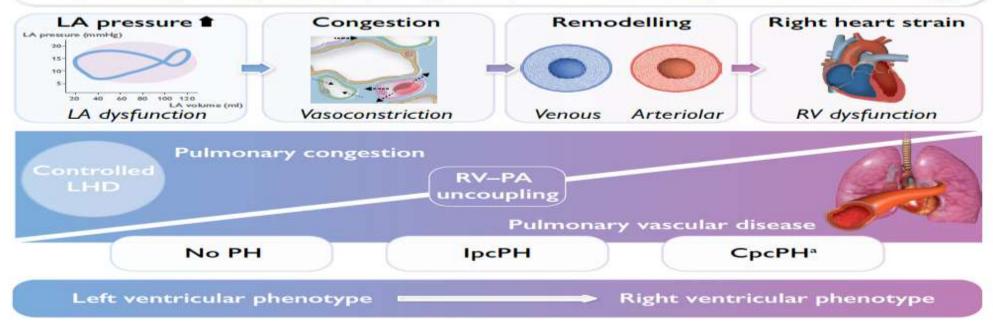
- 2. PA endothelial dysfunction (including vasoconstriction)
- 3. Vascular remodelling (which may occur in both venules and/or arterioles)
- 4. RV dilatation/dysfunction and functional TR
- 5. Altered RV–PA coupling

Guazzi, M. et al. J Am Coll Cardiol. 2020;76(9):1102-11.

PH-LHD: mPAP > 20 mmHg ,PAWP >15 mmHg

$PVR \leq 2 WU$

isolated post-capillary pulmonary hypertension(lpcPH)


PH results from the passive backwards transmission of elevated LAP

PVR > 2 WU

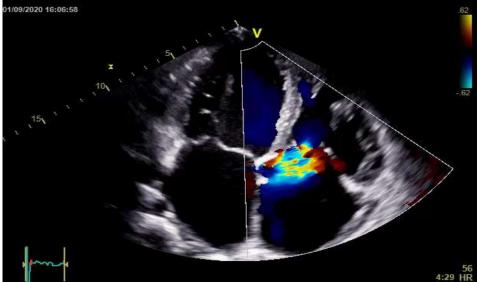
combined post- and pre-capillary pulmonary hypertension (CpcPH)

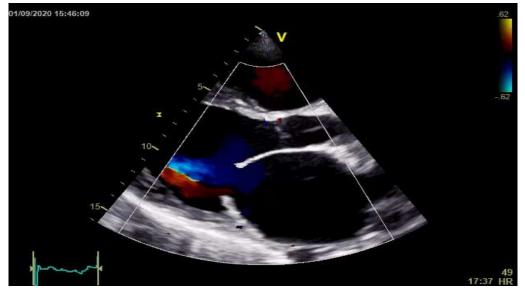
The addition of pulmonary vascular constriction or remodeling to passive PH

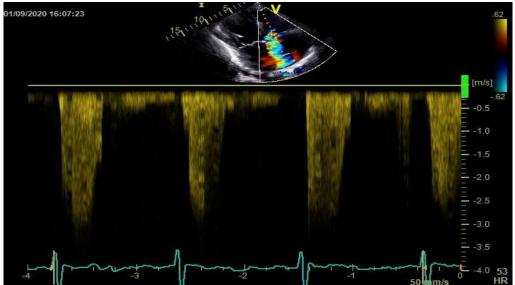
Variable degree of pulmonary congestion, vasoconstriction, vascular remodelling

Diagnosis of PH-LHD

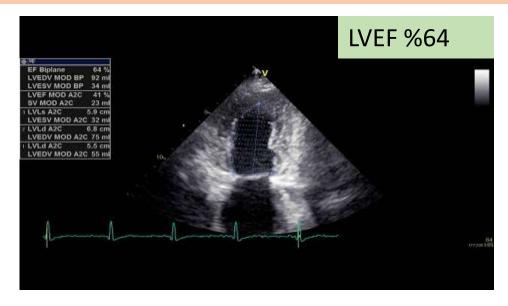
- 1. Diagnosis and control of the underlying LHD
- 2. Evaluation for PH and patient phenotyping
- 3. Invasive haemodynamic evaluation, when indicated

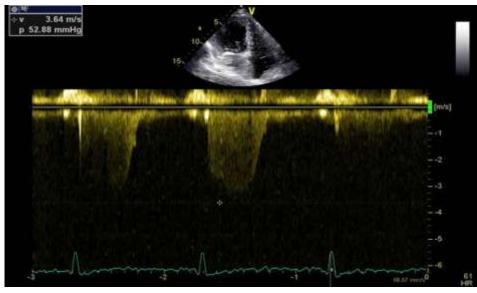

Diagnosis of PH-LHD


1. Diagnosis and control of the underlying LHD


- 2. Evaluation for PH and patient phenotyping
- 3. Invasive haemodynamic evaluation, when indicated

HFrEF-PH





HFpEF

TY vel: 3,6 m/s, PSAP: 55 mmHg

The HFA-PEFF Algorithm for the Diagnosis of HFpEF Symptoms and/or Signs of HF Comorbidities / Risk factors • ECG Initial Workup Ρ Standard Echocardiography (Step 1 (P) : Pretest Assessment) Natriuretic Peptides Ergometry / 6 min walking test or Cardiopulmonary Exercise Testing **Diagnostic Workup** Comprehensive Echocardiography Е (Step 2 (E) : Echocardiographic and Natriuretic Peptide Score) Natriuretic Peptides, if not measured in Step 1 Advanced Workup Diastolic Stress Test: Exercise Stress Echocardiography **F1** (Step 3 (F1) : Functional testing in Case of Uncertainty) Invasive Haemodynamic Measurements Cardiovascular Magnetic Resonance Cardiac or Non-Cardiac Biopsies Aetiological Workup F2 Scintigraphy / CT / PET (Step 4 (F2) : Final Aetiology) Genetic testing Specific Laboratory Tests

HFA-PEFF: Heart Failure Association-Preserved Ejection Fraction Failure

Pieske B, et al. European Journal of Heart Failure (2020) 22, 391-412

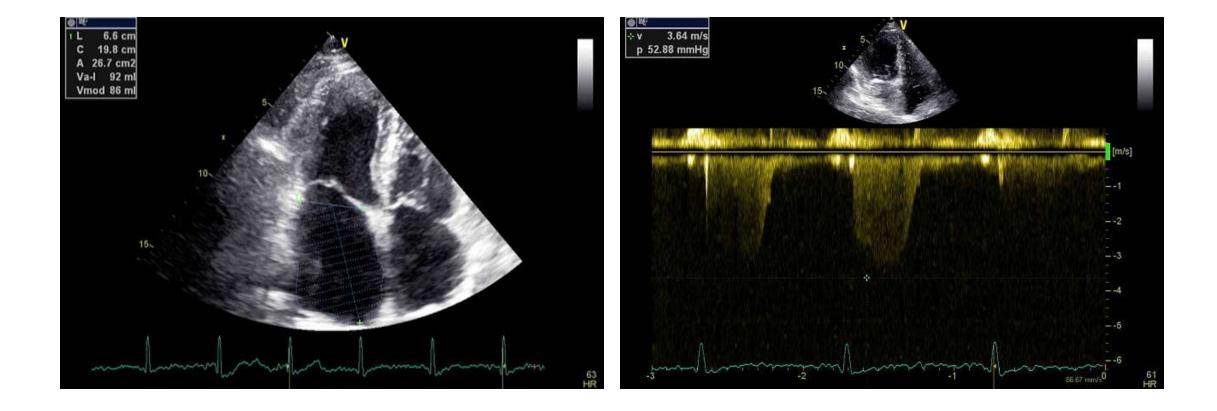
HFA–PEFF skoru		Functional	Morphological	Biomarker (SR)	Biomarker (AF)
	Major	septal e' < 7 cm/s or lateral e' < 10 cm/s or Average E/e' ≥ 15 or TR velocity > 2.8 m/s (PASP > 35 mmHg)	LAVI > 34 ml/m ² or LVMI ≥ 149/122 g/m ² (m/w) and RWT > 0,42 #	NT-proBNP > 220 pg/ml or BNP > 80 pg/ml	NT-proBNP > 660 pg/ml or BNP > 240 pg/ml
	Minor	Average E/e' 9 -14 or GLS < 16 %	LAVI 29-34 ml/m ² or LVMI > 115/95 g/m ² (m/w) or RWT > 0,42 or LV wall thickness ≥12 mm	NT-proBNP 125-220 pg/ml or BNP 35-80 pg/ml	NT-proBNP 365-660 pg/ml or BNP 105-240 pg/ml
	Мајо	r Criteria: 2 points	≥ 5 points: HFpEF		
	Minor Criteria: 1 point 2-4 points: Diastolic Stress Test or Invasive Haemodynamic Measure			namic Measurements	

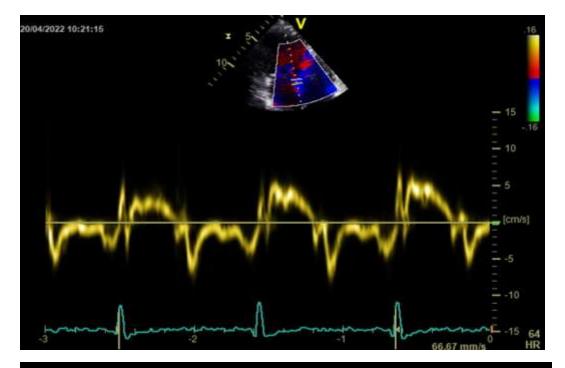
H₂FPEF score

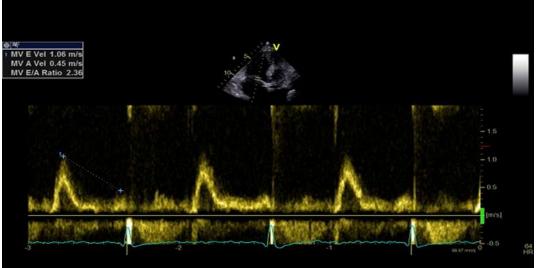
	Clinical Variable	Values	Points
	Heavy	Body mass index > 30 kg/m ²	2
H ₂	Hypertensive	2 or more antihypertensive medicines	1
F	Atrial Fibrillation	Paroxysmål or Persistent	3
Ρ	Pulmonary Hypertension	Doppler Echocardiographic estimated Pulmonary Artery Systolic Pressure > 35 mmHg	1
E	Elder	Age > 60 years	1
F	Filling Pressure	Doppler Echocardiographic E/e' > 9	
	H ₂ FF	PEF score	Sum (0-9)
Total P	Points 0 1	2 3 4 5 6 7	8 9
Probab	bility of HFpEF 0.2 0	0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95	

Dyspnea on exertion, normal EF

- HFpEF vs. non-cardiac dyspnea?
- Intermediate pre-test probability

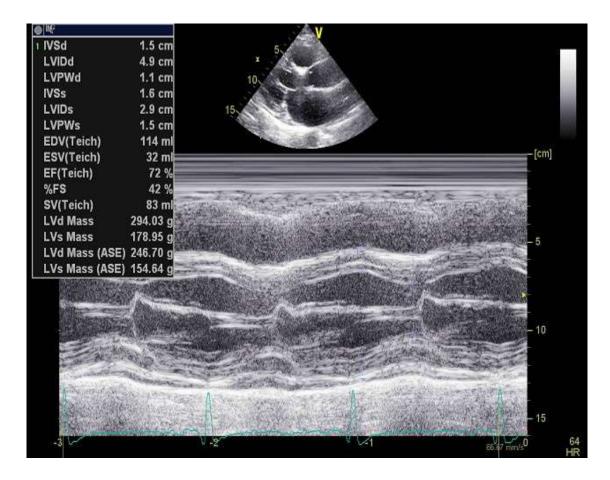

Nomogram below table for probability of HFpEF based on score:


- A score of 4 or higher = 70% probability of HFpEF
- A score of 5 or higher = >80% probability of HFpEF
- A score of 7 or higher = >95% probability of HFpEF


Reddy YN...Borlaug BA. Circulation 2018

Hastanın LAVI: 42,4 mL/m2

Hastanın TY vel: 3,6 m/s, PSAB: 55 mmHg



E/e' oranı: 15

20/04/2022 10:19:30 20/04/2022 10:19:46 10 64 12:72 HR 11:71 HR AFI 31 20/04/2022 10:19:06 No. 2year Man RTA CRUBAN RTA MARKED 63 14:82 HR

Hastanın sol ventrikül GLS: -%16

Hastanın LVMI : 121 g/m2, RWT: 0,44

Hastanın pro-BNP: 1078 pg/ml

HFA–PEFF skoru

E/e' oranı: 15

Hastanın TY vel: 3,6 m/s, PSAB: 55 mmHg

Hastanın sol ventrikül GLS: -%16

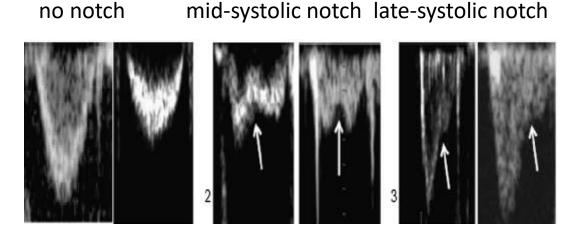
Hastanın LAVI: 42,4 mL/m2

Hastanın LVMI : 121 g/m2, RWT: 0,44

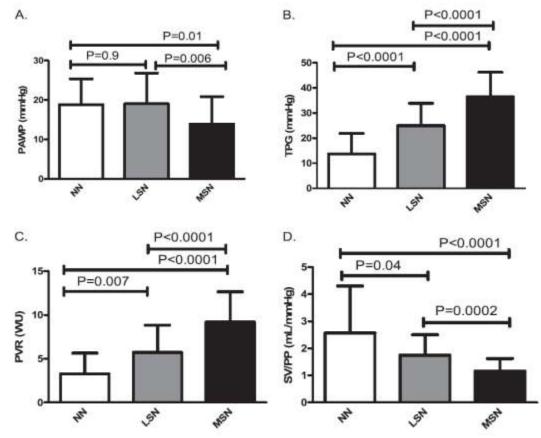
Hastanın pro-BNP: 1078 pg/ml

Hastanın HFA-PEFF skoru: 6

	Functional	Morphological	Biomarker (SR)	Biomarker (AF)
Maior	septal e' < 7 cm/s or lateral e' < 10 cm/s or Average E/e' ≥ 15 or TR velocity > 2.8 m/s (PASP > 35 mmHg)	LAVI > 34 ml/m ² or LVMI ≥ 149/122 g/m ² (m/w) and RWT > 0,42 #	NT-proBNP > 220 pg/ml or BNP > 80 pg/ml	NT-proBNP > 660 pg/ml or BNP > 240 pg/ml
Minor	Average E/e' 9 -14 or GLS < 16 %	LAVI 29-34 ml/m ² or LVMI > 115/95 g/m ² (m/w) or RWT > 0,42 or LV wall thickness ≥12 mm	NT-proBNP 125-220 pg/ml or BNP 35-80 pg/ml	NT-proBNP 365-660 pg/ml or BNP 105-240 pg/ml
M	ajor Criteria: 2 points	≥ 5 points: HFpEF		
М	Minor Criteria: 1 point 2-4 points: Diastolic Stress Test or Invasive Haemodynamic Measurements			


Diagnosis of PH-LHD

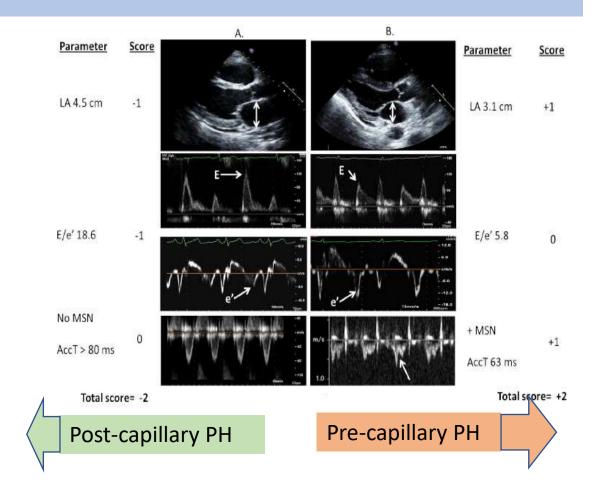
1. Diagnosis and control of the underlying LHD

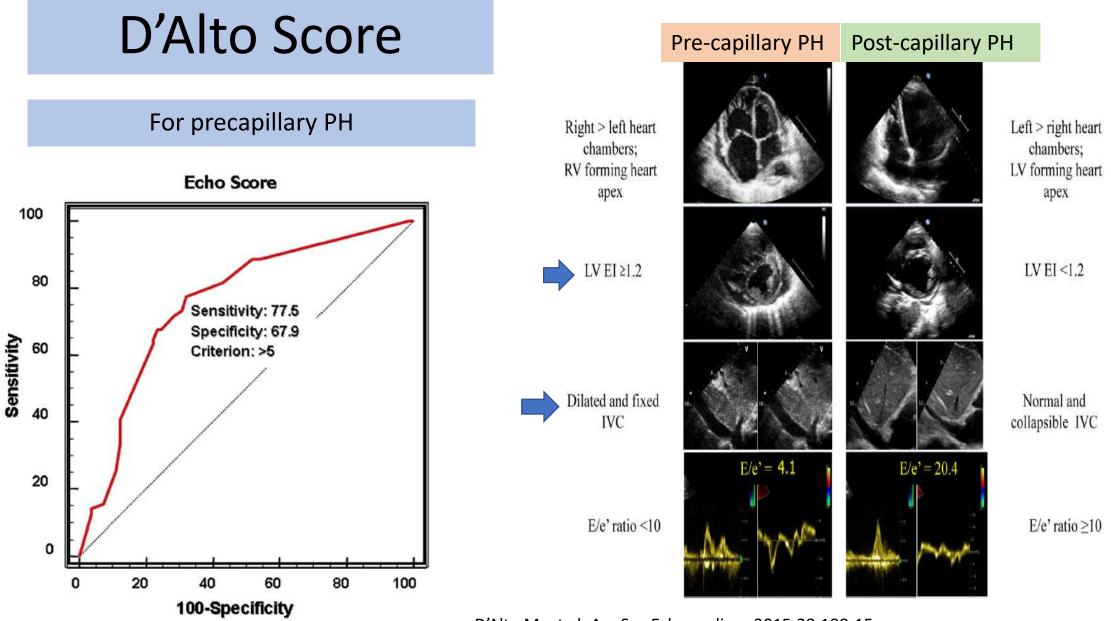

2. Evaluation for PH and patient phenotyping

3. Invasive haemodynamic evaluation, when indicated

Shape of the Right Ventricular Doppler Envelope Predicts Hemodynamics and Right Heart Function in PH

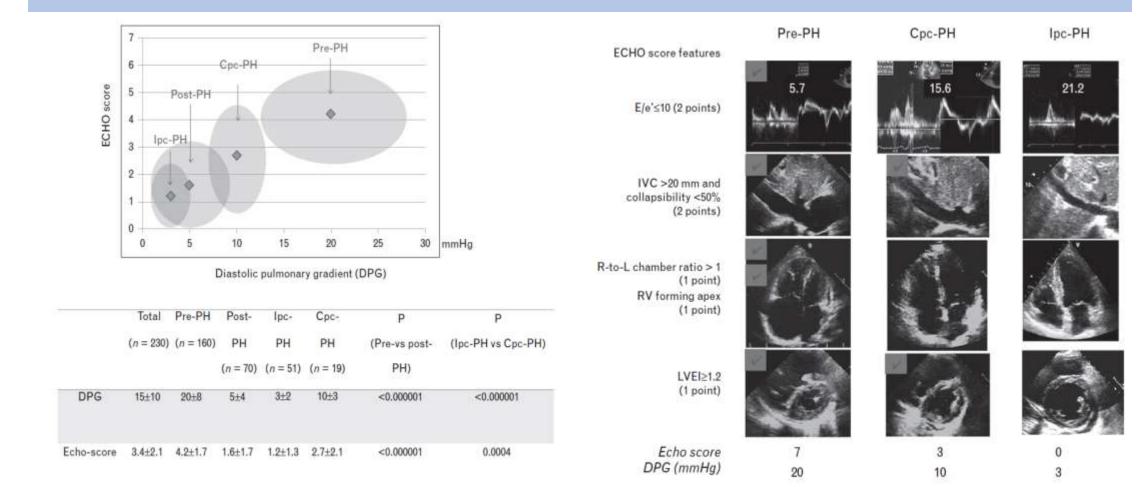
- 88 pt (28 pts group I, 22 pts group II, 30 pts group III, 4 group V)
- A notched RVDE was highly associated with PH and a PVR > 3 WU, whereas its absence (NN) predicted PH with a PVR ≤ 3 WU and a PAWP > 15 mm Hg


Arkles J.S. Et al; Am J Resp Crit Care Med, 2011


Opotowsky Score

The Echocardiographic Score

Echocardiographic Parameter	If Present
E:e' >10	-1
Left atrial AP dimension>4.2cm	-1
Left atrial AP dimension<3.2cm	+1
RVOT PW Doppler mid-systolic notch or acceleration time<80msec	+1


152 patients

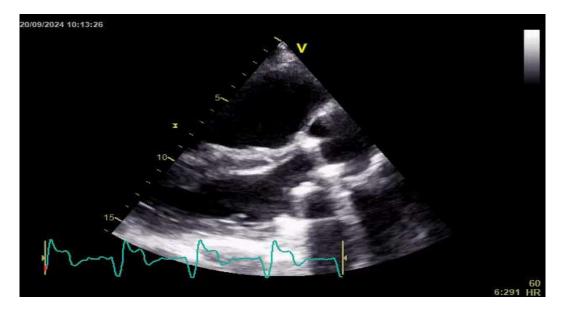
D'Alto M, et al; Am Soc Echocardiogr 2015;28:108-15.

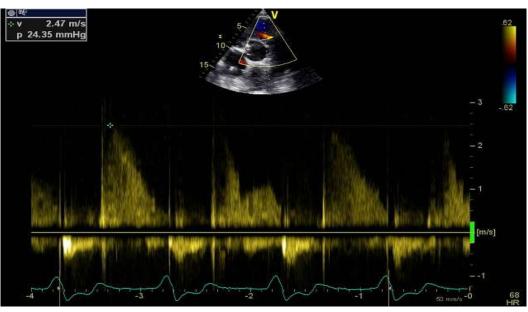
New simplified D'Alto score

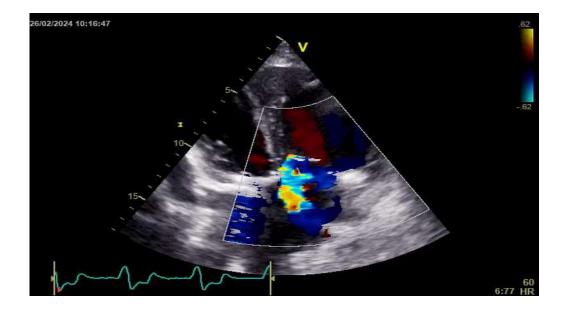
The sensitivity and specificity of the echo score at least 2 for precapillary pulmonary hypertension were 99 and 54%, respectively

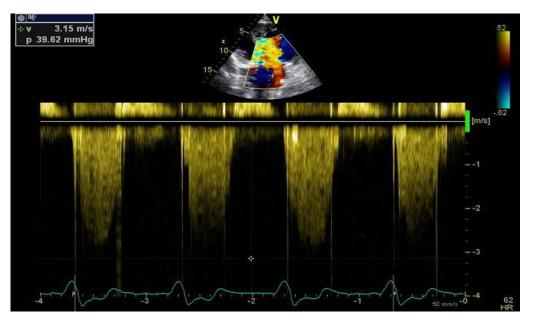
D'alto M.et al; J Cardiovasc Med 2017, 18:237–243

Echocardiographic distinction between precapillary and postcapillary PH

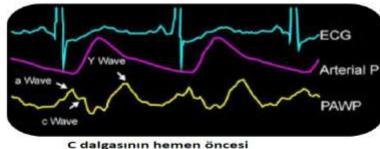

Pre-capillary PH	PH-LHD
Normal sized or small LV cavity	Normal sized or dilated LV cavity
No LV hypertrophy	LV hypertrophy
Preserved LVEF	Variable LVEF
Normal sized or small left atrium	Dilated left atrium
Grade I LV diastolic dysfunction or normal LV diastolic function	Srade II LV diastolic dysfunction
Presence of mid-systolic notching	Absence of mid-systolic notching
RV/LV ratio > 1	RV/LV ratio < 1
PASP > 70 mmHg	Typically PASP < 70 mmHg
Pericardial effusion	No pericardial effusion
No mitral and/or aortic valve disease	Mitral and/or aortic valve disease


Patient phenotyping and likelihood for LHD as cause of PH


Feature	PH-LHD unlikely	Intermediate probability	PH-LHD likely
Age	<60 years	60–70 years	>70 years
Obesity, hypertension, dyslipidaemia, glucose intolerance/ diabetes	No factors	1–2 factors	>2 factors
Presence of known LHD	No	Yes	Yes
Previous cardiac intervention	No	No	Yes
Atrial fibrillation	No	Paroxysmal	Permanent/persistent
Structural LHD	No	No	Present
ECG	Normal or signs of RV strain	Mild LVH	LBBB or LVH
Echocardiography	No LA dilation E/e' <13	No LA dilation Grade <2 mitral flow	LA dilation (LAVI >34 mL/ m ²) LVH Grade >2 mitral flow


2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

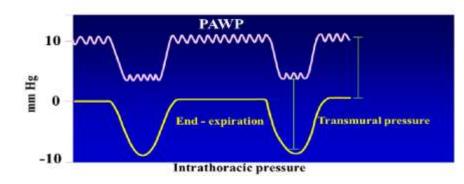
Group 1 or group 2?


Diagnosis of PH-LHD

- 1. Diagnosis and control of the underlying LHD
- 2. Evaluation for PH and patient phenotyping
- 3. Invasive haemodynamic evaluation, when indicated

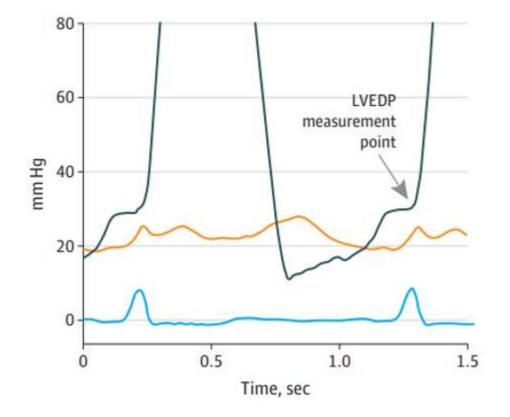
Indications for RHC in LHD

- 1. suspected PAH or CTEPH
- 2. suspected CpcPH with a severe pre-capillary component
- 3. advanced HF and evaluation for heart transplantation


A strict methodology for PAWP measurement is mandatory for accurate diagnosis



(diyastol sonu)


× ×


Diyastol sonu PAWP ≈ oPAWP

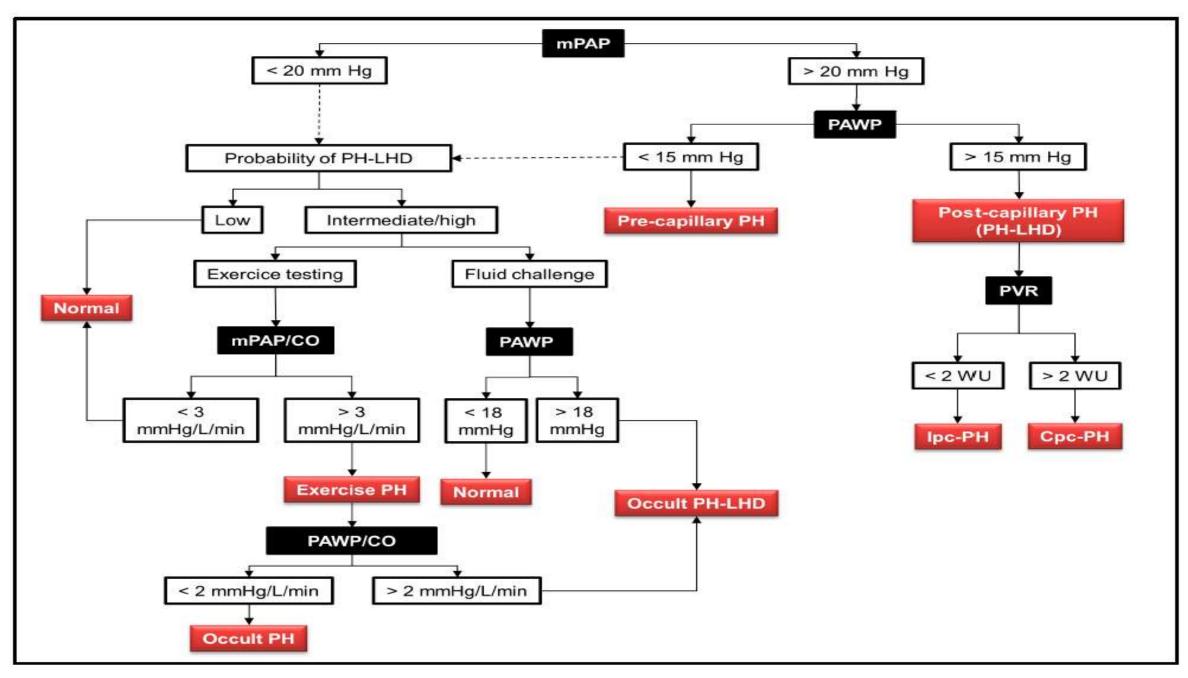
LVEDP measurement

Reddy YN, et al. JAMA Cardiology, 2018

A strict methodology for PAWP measurement is mandatory for accurate diagnosis

resting PAWP 12–15 mmHg :

May be a mild form of, post-capillary PH


PAWP 12-(15)-18 mmHg: a zone of PAWP "uncertainty"

• Use all imaging and clinical variables, including pre-test probability of PH-LHD to phenotype and categorise PH patients

Provocative Testing

Variable (Provocative Testing)	Ν	PH-LHD
1. Exercise		
mPAP/CO (mm Hg/L/min)	<3	>3
PAWP/CO (mm Hg/L/min)	<2	>2
2. Volume challenge		
PAWP at the end of volume challenge (<5 min)	<18	>18

administer a 7 mL/kg bolus of normal saline over 5 min and to measure PAWP at the end of infusion

Therapeutic Management

Aims:

- Decrease PAWP to improve PA compliance and prevent PVD
- Reduce PVR in the case of established PVD,
- Prevent or treat RV-PA uncoupling.

Optimize the management of the underlying cardiac disease

Guideline-directed medical therapies, treatment of comorbidities with HFpEF, primarily, diabetes, obesity and hypertension

Optimize the management of the underlying cardiac disease

Novel drugs used in HF therapy in reducing PAP in patients with PH-LHD, including angiotensin receptor– neprilysin inhibitör (ARNI) and sodium–glucose cotransporter-2 (SGLT-2) inhibitors

Left Ventricle Assist Device

- In advanced HFrEF, LVAD is a therapeutic option as a bridge to transplantation, bridge to candidacy or as a destination therapy
- Implantation of an LVAD may normalize PAP and PVR in a significant number of, but not in all, patients, and those with persisting precapillary PH have reduced survival
- It may be possible that such patients could benefit from PAH tx (SOPRANO : macitentan in patients with LVAD and persisting elevated PVR)

Drugs Approved for Pulmonary Artery Hypertension

ERAs- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
ERAs					
Sutsch et al. [129]	36 HFrEF	2.6 ± 1.3	Bosentan 2 w	CO, mPAP, PCWP, RAP	
Luscher et al. [130]	157 HFrEF	3.1 ± 0.6	Darusentan 3 w	CI, PCWP, PVR, RAP	\nearrow CI; \leftrightarrow PCWP, PVR, RAP
Anand et al. [131]	642 HFrEF	NA	Darusentan 24 w	LVESV	$\leftrightarrow LVESV$
Packer et al. [132]	370 HFrEF	NA	Bosentan 26 w	Death, NYHA, HHF	Early stop (liver toxicity)
Kaluski et al. [133]	94 HFrEF	NA	Bosentan 20 w	spap, CI	\leftrightarrow sPAP, CI \nearrow SAEs
Packer et al. [134]	1613 HFrEF	NA	Bosentan 9 m	Death, HF admission	↔ outcome ↗ congestion
Frantz et al. [135]	57 LVAD (Cpc-PH)	4.3 ± 0.9	Macitentan 12 w	PVR, mPAP, RAP, PCWP	$\begin{array}{c} \searrow PVR \\ \leftrightarrow mPAP, RAP, \\ PCWP \end{array}$
Koller et al. [136]	63 HFpEF	3.7 ± 2.5	Bosentan 12 w	6MWD PASP, RAP, TAPSE	↔ all variables Early stop (liver toxicity, ∕ HF)
Vachiery et al. [137]	63 mixed 76% HFpEF (Cpc-PH)	5.6 (3.7–7.3)	Macitentan 12 w	CI, NT-proBNP PCWP, PVR, RAP	↔ PCWP, PVR, RAP, CI; ≯ fluid retention
SERENADE NCT03153111	300 HFrEF (Cpc-PH)	NA	Macitentan 24 w	Plasma NT-proBNP, worsening heart failure	\leftrightarrow all variables Early stop

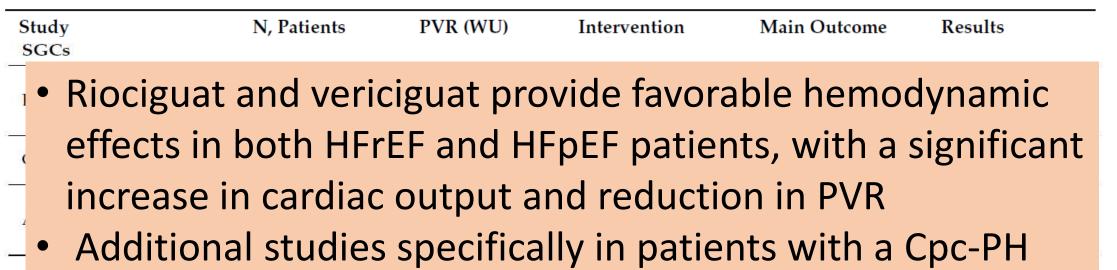
ERAs- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results	
ERAs						
Sutsch et al. [129]	36 HFrEF	2.6 ± 1.3	Bosentan 2 w	CO, mPAP, PCWP, RAP	PCWP, RA	
Luscher				or normania	,	CWP,
Anand e	ERAs do not	work in	natients w	vith PH-I F		
Packer e			•		<u>.</u>	(liver
	related to	HEnEE o	r HFrFF ar	nd may he		r
Kaluski (iu may be		
Packer e	associated	with cig	nificant ci	do offocto	10	on
	associated	with sig	IIIICalle SI	ue enects	,	on
Frantz et					ŀ	RAP,
	primarily in	icreased	congestic	n and live		bles
Koller et	• •	<u>.</u>	• •.			(liver HF)
		tox	icity.			PVR,
Vachiery	(Cpc-PH)		•		retention	^t fluid
SERENADE NCT03153111	300 HFrEF (Cpc-PH)	NA	Macitentan 24 w	Plasma NT-proBNP, worsening heart failure	↔ all varia Early stop	bles

PDE5i- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
PDE5i					
Lewis et al. [138]	34 HFrEF	4.3 ± 0.5	Sildenafil 12 w	Peak VO2, PVR, 6MWD, QOL	∕VO2, 6MWT, QOL ↓PVR
Behling et al. [139]	19 HFrEF	NA	Sildenafil 4 w	PAPS, exercise capacity (CPET)	
Guazzi et al. [140]	45 HFrEF	NA	Sildenafil 12 m	LVEF, LV diastolic function, exercise capacity, QOL	
Guazzi et al. [141]	32 HFrEF	4.5 ± 0.7	Sildenafil 12 m	Exercise capacity, pulmonary hemodynamics	
Amin et al. [142]	106 HFrEF	NA	Sildenafil 12 w	MAP, 6MWD, hospitalization	↔ MAP
Cooper et al. [143]	210 HFrEF	NA	Sildenafil 24 w	Symptoms score, 6MWD, QOL and PASP	69 pts analyzed ↔ all variables
Guazzi et al. [144]	44 HFpEF (Cpc-PH+ RV failure)	3.9 ± 1.4	Sildenafil 6–12 m	mPAP, PAWP, PVR, TAPSE	→ mPAE PAWE PVR → TAPSE, → CI
Redfield et al. [145]	216 HFpEF (Ipc-PH)	NA	Sildenafil 24 w	Peak VO2, 6MWD	↔ Peak VO2, 6MWD ↗ AEs (ns)
Andersen et al. [146]	70 HFpEF (Ipc-PH)	2.6 ± 0.9 *	Sildenafil 9 w	PCWP, PAP, CI	↔ PCWP, PAP ≯ CI
Hoendermis et al. [147]	52 HFpEF (65% Ipc-PH)	>3 in 35% pts	Sildenafil 12 w	mPAP, PCWP, CO and peak VO2	\leftrightarrow all variables
Bermejo et al. [148]	200 LVD (57% Cpc-PH)	3.4 (2.4-4.6)	Sildenafil 24 w, >1 y after valve repair	Composite: death, HF episodes; 6MWD, sPAP, BNP	Clinical worsening ↔ 6MWD, BNP, sPAP
Belyavskiy et al. [149]	50 HFpEF (Cpc-PH)	3.3 ± 0.6	Sildenafil 24 w	6MWD, NYHA, PASP, TAPSE	∕ 6MWD ∖ PASP, NYHA ∕ TAPSE

PDE5i- clinical trials in PH-LHD


Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
PDE5i					
Lewis et al. [138]	34 HFrEF	4.3 ± 0.5	Sildenafil 12 w	Peak VO2, PVR, 6MWD, QOL	✓ VO2, 6MWT, QOL ✓ PVR
Behling et al. [120]	10 LIEFEE	NIA	Sildanafil 4 w	PAPS, exercise	
Guazzi e CU	rrent evic	dence doe	es not supp	ort the ge	neral 📑
Guazzi e	us	e of silde	nafil for PH	I-LHD	R,
• Reg	istry data	asuggeste	ed improve	ments in) uti sd
Cooper e eXer	cise capa	city with	PDE5i in pa	atients wit	
Guazzi e	•	•			c
Redfield HPP	ЕЕ-Срсре	and PVR	R mostly >5	WU.	
Andersen et al. [146]	70 HFpEF (Ipc-PH)	2.6 ± 0.9 *	Sildenafil 9 w	PCWP, PAP, CI	\leftrightarrow PCWP, PAP \nearrow CI
Hoendermis et al. [147]	52 HFpEF (65% Ipc-PH)	>3 in 35% pts	Sildenafil 12 w	mPAP, PCWP, CO and peak VO2	\leftrightarrow all variables
Bermejo et al. [148]	200 LVD (57% Cpc-PH)	3.4 (2.4-4.6)	Sildenafil 24 w, >1 y after valve repair	Composite: death, HF episodes; 6MWD, sPAP, BNP	Clinical worsening ↔ 6MWD, BNI
					sPAP

sGSs - clinical trials in PH-LHD

Study SGCs	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
Bonderman et al. [150]	201 HFrEF	3.6 ± 0.3	Riociguat 16 w	mPAP, CI, SVI, PVR	
Gheorghiade et al. [151]	351 HFrEF	NA	Vericiguat 12 w	Change in NT-proBNP	\leftrightarrow NT-proBNP
Armstrong et al. [152]	5050 HFrEF	NA	Vericiguat 10.8 m	Composite: CV death, first HHF	y primary outcome
Bonderman et al. [153]	39 HFpEF	2.8 ± 1.3	Riociguat 6 h	mPAP, PVR, PCWP TPG, SV, PAS	$\begin{array}{l} \leftrightarrow \text{ mPAP, PVR,} \\ \prime \text{PCWP, TPG;} \nearrow \\ \text{SV,} \searrow \text{PAS} \end{array}$
Pieske et al. [154]	477 HFpEF	NA	Vericiguat 12 w	NT-proBNP, LA volume, QOL	↔ NT-proBNP, LA volume; ↗ QOL
Udelson et al. [155]	181 HFpEF	NA	Praliciguat 12 w	Peak VO2, 6MWD	↔ peak VO2, 6MWD
Armstrong et al. [156]	789 HFpEF	NA	Vericiguat 24 w	Physical limitation score	\leftrightarrow score
Dachs et al. [157]	114 HFpEF (Ipc-PH 60%)	3.2 ± 1.7	Riociguat 26 w	CO, PVR, PCWP, TPG, SVR	\nearrow CO; \searrow PVR, TPG \leftrightarrow PCWP, SVR 5 dropouts

Ltaief Z, et al. Int. J. Mol. Sci. 2023, 24, 9971

sGSs - clinical trials in PH-LHD

- ^B should be conducted.
- Vericiguat significantly improves clinical outcomes in
- HFrEF patients with a recent worsening of HF symptoms

Armstrong et al. [156]	789 HFpEF	NA	Vericiguat 24 w	Physical limitation score	\leftrightarrow score
Dachs et al. [157]	114 HFpEF (Ipc-PH 60%)	3.2 ± 1.7	Riociguat 26 w	CO, PVR, PCWP, TPG, SVR	\nearrow CO; \searrow PVR, TPG \leftrightarrow PCWP, SVR 5 dropouts

Ltaief Z, et al. Int. J. Mol. Sci. 2023, 24, 9971

Prostacylin analogs- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
Prostacyclin analogs					
Sueta et al. [158]	33 HFrEF	3.6 ± 0.5	Epoprostenol 12 w, IV	6MWD	≯6MWD
Califf et al. [159]	471 HFrEF	NA	Epoprostenol 36 w, IV	Mortality, HF symptoms, 6MWD, QOL	Early stop (≯ mortality)
SOUTHPAW NCT03037580	84 HFpEF	NA	Treprostinil 24 w	6MWD, Plasma NT-proBNP, NYHA class	↔ all variables Early stop (slow enrolment)
RECAPTURE NCT04882774	30 HFpEF (Cpc-PH)	NA	Treprostinil	PVR, 6MWD	Not started

Prostacylin analogs- clinical trials in PH-LHD

Study	N, Patients P	VR (WU)	Intervention	Main Outcome	Results
Prostacycl	in analogs				
Sueta 🖕	Only limited informa	tion cur	rently exists	regarding	'n
Califf	prostacyclin analogs	for the ⁻	treatment o	f PH-LHD.	pp halitat)
•	Long-term epoprost	enol has	s been asso	ciated with	tality)
SOUT NCT0	detrimental effects in	n HFrEF.			riables pp (slov
RECA •	In HFpEF, some enco	uraging	experiment	al data have	nt)
NCT0	been produced using	trepros	stinil		ted

IASDs- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
Interatrial shunt devices	s (IASDs)				
Obokata et al. [160]	79 HFpEF	1.5 ± 0.8	IASD up to 6 m	Resting and exercise pulmonary hemodynamics	∖ PVR, Ea ≯PAC
Shah et al. [161]	626 HFpEF	1.5 (1.1–2.1)	IASD 12–24 m	CV death, HF events QOL	\leftrightarrow all variables

IASDs- clinical trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
Interatrial shunt devices ((IASDs)				
				D	25

- IASD was associated with worse outcomes in the presence of latent PVD
- HFpEF patients with Ipc-PH and no evidence of latent PVD may benefit from shunt-mediated left atrial unloading

Pulmonary artery denervation- in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
				jā.	
Pulmonary artery dene	ervation (PADN)				
Zhang et al. [162]	98 mixed 60% HFrEF (Cpc-PH)	6.3 ± 3.2	PADN vs sham procedure 6 m	6MWD, PVR, clinical worsening	[∧] 6MWD, [∧] PVR [∧] clinical worsening

Pulmonary artery denervation- in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
-				,ő	
Pulmonary artery de	nervation (PADN)				

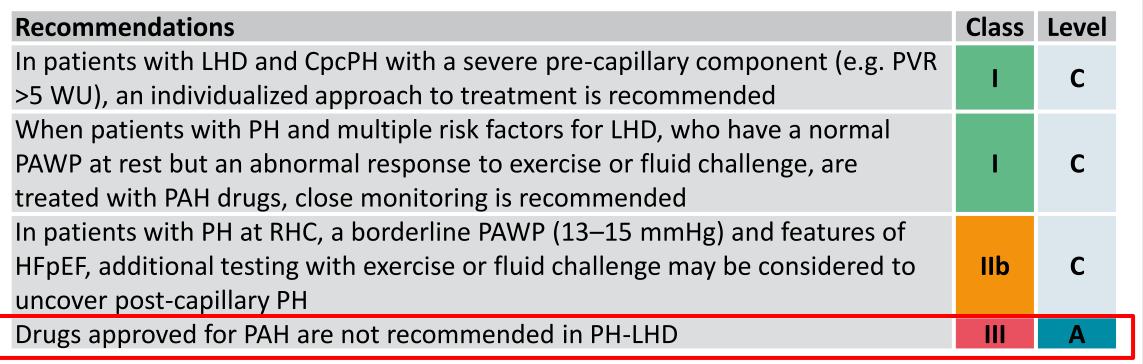
There is growing evidence that PADN permits significant hemodynamic and clinical benefits in patients with PH of various etiologies, including patients with a Cpc-PH

Levosimendan

- calcium sensitizer, potassium ATP (KATP) channel activator and phosphodiesterase-3 inhibitor with inotropic, vasodilatory and cardioproptective activity
- Experimental data showed that Levo could attenuate pulmonary vascular remodeling in an animal model of PH, attributed to antiproliferative and anti-inflammatory effects mediated by KATP channel activation
- In humans, some limited evidence suggests that Levo may reduce PAP and PVR and improve RV function in patients with PAH

Levosimendan- clinical trials in PH-LHD

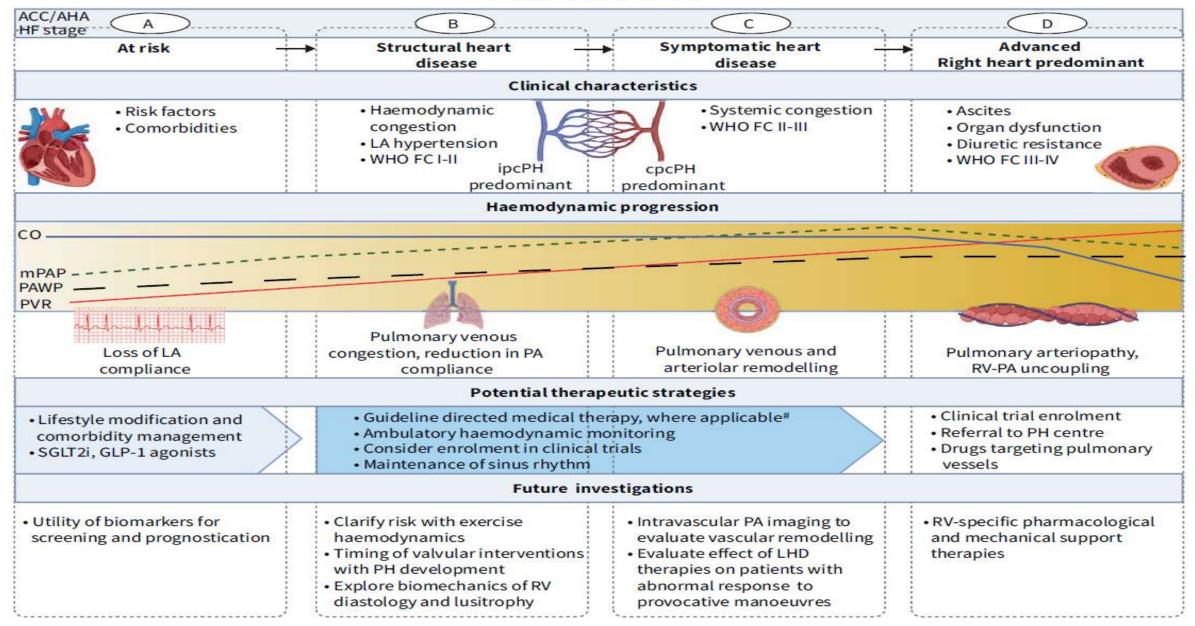
Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
Levosimendan					
Slawsky et al. [112]	146 HFrEF	NA	Levo 6 h, IV	SV, CI, PCWP, RAP, dyspnea score	 べ CI, SV ↘ PCWP, RAP, ↘ dyspnea
Parissis et al. [113]	54 HFrEF	NA	Levo 24 h, IV	RV function, sPAP, Plasma BNP	
Burkhoff et al. [115]	37 HFpEF	3.3 ± 2.6	Levo 6 w, IV	exercise-PCWP 6MWD, PCWP and CVP	$\leftrightarrow PCWP \\ \nearrow 6MWD \\ \searrow PCWP, CVP$


β3-Adrenoreceptor Agonists

- Mirabegron: a new class of drugs approved for the clinical treatment of overactive bladder,
- promotes NO-dependent signaling and indirectly activates cardiac myocyte Na+/K+-ATPase,
- improved cardiac performance in experimental heart failure and induced the vasodilation of isolated pulmonary vessels from animals and humans
- β3AR agonists could exert some benefits in severe HFrEF, but not in HFpEF patients

β3-Adrenoreceptor Agonists- trials in PH-LHD

Study	N, Patients	PVR (WU)	Intervention	Main Outcome	Results
β3AR agonist					
Bundgaard et al. [118]	22 HFrEF	3.5 ± 2.5	Mirabegron 1 w	PVR, SVR, <mark>CI</mark> , MAP	↔ MAP, SVR ↗ CI; ↘ PVR
García- Álvarez et al. [120]	80 HFpEF (70%)	4.0 (3.4-4.6)	Mirabegron 16 w	PVR, QOL RV function	$\leftrightarrow PVR, QOL $


Recommendations for pulmonary hypertension associated with left heart disease (2)

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension (European Heart Journal; 2022 – doi: 10.1093/eurheartj/ehac237 and European Respiratory Journal; 2022 – doi: 10.1183/13993003.00879-2022)

www.escardio.org/guidelines

Clinical stages of PH-LHD

In conclusion...

- Pulmonary hypertension related to left heart disease represents the most frequent form of PH
- Treatment should aim to reduce congestion and left-sided filling pressures, primarily with diuretics and heart failure tx
- All targeted therapies aiming to reduce PVR have mostly failed in patients with PH-LHD (A noticeable exception is the vericiguat in patients with advanced heart failure (VICTORIA study).

In conclusion...

- Studies will need to address the role of pulmonary vasodilators in the context of new heart failure therapies, including angiotensin receptor-neprilysin inhibitors and SGLT2 inhibitors
- Oral Levosimendan is an encouraging development.
- Positive results obtained with pulmonary artery denervation are also of considerable interest
- Based on available data, a PVR >5 WU may indicate a severe precapillary component, the presence of which may prompt physicians to refer patients to PH centers.

Thank you...

drdilekcicek@mersin.edu.tr drdilekcicek@hotmail.com

Mersin Türkiye

Mersin University